Preview

Agricultural Engineering (Moscow)

Advanced search

STRUCTURAL-AND-FUNCTIONAL MODELS FOR CONSTRUCTING DIGITAL TECHNOLOGICAL MODULES OF MODERN DAIRY FARMS

https://doi.org/10.26897/2687-1149-2021-2-32-38

Abstract

Establishing a standard series of digital automated robotic dairy farms of a new generation with different configurations and capacity (25-50-100…1200…2400 goals) implies their structural typing and modular building based on the methodology of finite element analysis and structural-functional models, including complete modular units. The author has developed structural and functional models for building digital technological modules and modular units of modern automated and robotic dairy farms of a new generation. Modular structural and functional units are proposed. They include passive accumulative and regulating modules of inanimate (material, technological) and animate biological flows (animals), active machine-technological modules for moving and transforming material technological and production flows to/from animals, information and analytical modules for rapid assessment of the quality of production flows, systems for receiving, transmitting, processing and storing information flows (signals) received from machine-technological modules (milking, feeding, manure removal, etc.) and from animal sensors. The author analyzed and obtained formalized structural and functional models of digital modular units: automated and robotic milking parlors, automated and robotic animal feeding systems, automated systems for differentiated microclimate provision, energy-saving aerobic and (or anaerobic) modules for manure processing as complete structures, including space-planning accumulative-regulating technological modules of the passive type and machine-technological modules of the active type to move and transform material technological flows, as well as carry out express diagnostics of their quality and storage of information flows. The implementation of the developed structural and functional models of digital technological modules and modular units will provide for designing new projects of digital automated and robotic dairy farms of a new generation with increased functionality and adaptive functions to be applied to biological objects.

About the Author

VLADIMIR V. Kirsanov
Federal Scientific Agroengineering Center VIM
Russian Federation


References

1. Rong L., Nielsen P.V., Bjerg B. et al. Summary of best guidelines and verification of CFD modeling in livestock buildings to ensure quality forecasting. Computers and electronics in agriculture, 2016; 121: 180-190. https://doi.org/10.1016/j. compag.2015.12.005

2. Ерохин М.Н., Кирсанов В.В., Цой Ю.А. и др. Структурно-технологическое моделирование процессов и функциональных систем в молочном скотоводстве // Научные труды ГНУ ВНИИМЖ Россельхозакадемии. 2007. Т. 17. № 1. С. 19-31.

3. Иванов Ю.А., Скоркин В.К., Гриднев П.И. и др. Интеллектуальная система управления и обеспечения эффективного производства продукции молочного скотоводства умной фермы // Аграрная наука Евро-Северо-Востока. 2019. Т. 20. № 1. С. 57-67. DOI: 10.30766/2072-9081.2019.20.1.57-67

4. Simensen E., 0steras O., Bee K.E. et al. Housing system and herd size interactions in Norwegian dairy herds; associations with performance and disease incidence. Acta Veterinaria Scandinavica, 2010; 52:14. DOI: 10.1186/1751-0147-52-14.

5. Черноиванов В.И., Толоконников Г.К., Федотов А.В. Биомашсистемы энергосберегающих технологий переработки отходов АПК // Техника и оборудование для села. 2020. Mb 2 (272). С. 2-7. DOI: 10.33267/2072-9642-2020-2-2-7

6. Khmelovskyi V, Rogach S., Tonkha O. et al. Quality evaluation of mixing fodder by mobile combined units. 18th International Scientific Conference Engineering For Rural Development. Book series: Engineering for Rural Development, 2019; 18(468): 299-304.DOI: 10.22616/ERDev2019.18.N468.

7. Кирсанов В.В., Цой Ю.А. Тенденции развития биотехнических систем в животноводстве // Сельскохозяйственные машины и технологии. 2020. Т. 14. № 3. С. 27-32. DOI: 10.22314/2073-7599-2020-14-3-27-32.

8. Игнаткин И.Ю. Оптимизация эффективности утилизации теплоты воздухо-воздушного рекуператора // Вестник ФГОУ ВПО «МГАУ имени В.П. Горячкина». 2018. № 1 (83). С. 34-39. DOI: 10.26897/1728-7936-2018-1-34-39.

9. Иванов Ю.А., Скоркин В.К., Аксенова В.П. Оптимизация и модернизация технологических процессов молочных ферм // Международный технико-экономический журнал. 2020. № 4. С. 7-15. DOI: 10.34286/1995-4646-2020-73-4-7-15.

10. Bottani E., Gentilotti M.C. & Rinaldi M. A Fuzzy Logic-Based Tool for the Assessment of Corporate Sustainability: A Case Study in the Food Machinery Industry. Sustainability, 2017; 9: 583. DOI: 10.3390/su9040583.

11. Кирсанов В.В., Филонов Р.Ф., Тареева О.А. Алгоритм управления доильными установками типа «Карусель» // Техника и оборудование для села. 2012. № 10. С. 20-22.

12. Рузин С.С., Владимиров Ф.Е., Юрочка С.С. и др. Обоснование технологических схем и параметров роботизированных доильных залов // Сельскохозяйственные машины и технологии. 2020. Т. 14. № 3. С. 20-26. DOI: 10.22314/2073-7599-2020-14-2-20-26.

13. Tanveer M.H., Recchiuto C.T., Sgorbissa A. Analysis of path following and obstacle avoidance for multiple wheeled robots in a shared workspace. Cambridge University Press, 2018; 37(1): 1-29. DOI: 10.1017/S0263574718000875.

14. Купреенко А.И., Исаев Х.М., Михайличенко С.М. Технологическая линия приготовления и раздачи кормосмесей на базе автоматического кормового вагона // Сельский механизатор. 2020. № 1. С. 14-15.

15. Новиков Н.Н., Кольчик И.Е. Современное оборудование и технические средства обеспечения микроклимата на животноводческих фермах // Техника и технологии в животноводстве. 2020. № 1 (37). С. 81-88.

16. Briukhanov A., Shalavina E., Vasilev E. et al. Behaviour of acidity, total nitrogen and total phosphorus in fermented solid organic waste from pig-rearing соmplex. Engineering for rural development, 2020: 645-652. DOI: 10.22616/ERDev.2020.19.TF144.

17. Njuguna A., Mbohwa C., Ntuli F. et al. Waste to choose bio-energy digest and design model for organic solid waste fraction. Renewable and Sustainable Energy Reviews, 2018; 82: 1113-1121. https://doi.org/10.1016/j.rser.2017.09.051.

18. Попов В.Д., Ерохин М.Н., Брюханов А.Ю. и др. Перспективы создания экологических центров промышленной переработки органических отходов животноводства // Агроинженерия. 2020. № 3 (97). С. 4-11. DOI: 10.26897/2687-1149-2020-3-4-11.

19. Kovalev D.A., Katraeva I.V., Mikheeva E.R. et al. Two-phase anaerobic treatment of highly concentrated wastewater of confectionary industry to produce hydrogen and methane-containing biogas. International conference «Actual scientific & technical issues of chemical safety» (astics-2020). Book of Abstracts, 2020: 125-126.


Review

For citations:


Kirsanov V.V. STRUCTURAL-AND-FUNCTIONAL MODELS FOR CONSTRUCTING DIGITAL TECHNOLOGICAL MODULES OF MODERN DAIRY FARMS. Agricultural Engineering (Moscow). 2021;(2):32-38. (In Russ.) https://doi.org/10.26897/2687-1149-2021-2-32-38

Views: 110


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1149 (Print)
ISSN 2687-1130 (Online)