Protection of electric generators of distributed generation objects against emergency modes
https://doi.org/10.26897/2687-1149-2024-3-80-88
Abstract
Distributed generation is a good solution for areas remote from centralized power supply sources as it helps increase the reliability of consumer operation. Distributed generation power supply systems use renewable sources of electricity, diesel generators and gasoline generators in the form of mobile power stations, which in most cases are not equipped with modern means of protection. This study presents an analysis of existing means of protecting electric generators from abnormal and emergency operating conditions, including voltage asymmetry, which is one of the factors reducing the service life of generators and is typical for rural electrical networks. During the analysis, the authors determined the main types of generator protection against emergency operation modes: protection of stator windings, protection against underfrequency and overfrequency, protection against undervoltage and overvoltage, protection against voltage (current) asymmetry. It is noted that the main cause of voltage asymmetry leading to mechanical vibration and rapid overheating of the rotor is single-phase loads in the system, which are unevenly distributed over three phases. The problem of voltage asymmetry is mainly solved by redistributing loads in transmission lines and/or installing compensating devices. However, in rural power supply systems, unbalanced load distribution is rarely corrected. The voltage asymmetry can be compensated through the use of hybrid active power filters of series compensation and improved control methods of these filters. Voltage converters that are effective in equalizing voltage asymmetry in PV systems can effectively protect small capacity diesel power generators provided that the use of additional equipment is economically viable.
About the Authors
V. E. BolshevRussian Federation
Vadim E. Bolshev, CSc (Eng), Senior Research Engineer, Laboratory of Electricity Supply and Renewable Energy
1st Institutsky Proezd Str., bld. 5, Moscow, 109428
A. V. Vinogradov
Russian Federation
Aleksandr V. Vinogradov, DSc (Eng), Associate Professor, Chief Research Engineer, Laboratory of Electricity Supply and Renewable Energy; Professor, Power Supply Department
1st Institutsky Proezd Str., bld. 5, Moscow, 109428,
Generala Rodina Str., 69, Orel, 302019,
49 Timiryazevskaya Str., Moscow, 127434
S. V. Kramskoy
Russian Federation
Sergey V. Kramskoy, postgraduate student, the Department of Power Supply
Generala Rodina Str., 69, Orel, 302019
S. I. Belov
Russian Federation
Sergey I. Belov, CSc (Eng), Associate Professor; Associate Professor of the Department of Power Supply and Electrical Engineering named after Academician I.A. Budzko
49 Timiryazevskaya Str., Moscow, 127434
References
1. Drozdowski P., WarzechaA. Mathematical study and control of diesel rotary uninterruptible power supply. 15th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE. Zakopane, Poland, 2019. Рp. 469 475. https://doi.org/10.1109/WZEE48932.2019.8979991
2. Khvatov O.S., DaryenkovA.B. Power plant based on a variable speed diesel generator. Elektrotekhnika. 2014;3:28 32 (In Russ.).
3. Boldea I. Electric generators handbook-two volume set. New York, USA: CRC Press, 2018. 580 р.
4. Yulisetiawan R.D., Koenhardono E.S., Sarwito S. Effect analysis of unbalanced electric load in ship at three phase synchronous generator on laboratory scale. Jurnal Teknik ITS. 2016;5(2). https://doi.org/10.12962/j23373539.v5i2.19417
5. Boldea I. Synchronous generators. New York, USA: CRC Press, 2005. 444 р. https://doi.org/10.1201/9781420037258
6. MazalovA.A. Adaptive wind power plant of alternating current with inductor motor. Izvestiya SFedU. Engineering Sciences. 2010;3:250 256. (In Russ.).
7. Serebryakov R.A., Dorzhiev S.S., Bazarova E.G. State of the art, problems and prospects of wind energy development. Vestnik VIESKH. 2018;1:89 96. (In Russ.).
8. Muljadi E., Yildirim D., Batan T., Butterfield C.P. Understanding the unbalanced-voltage problem in wind turbine generation. Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat No99CH36370). IEEE, 1999. Рp. 1359 1365. https://doi.org/10.1109/IAS.1999.801678
9. Brekken T., Mohan N. A novel doubly-fed induction wind generator control scheme for reactive power control and torque pulsation compensation under unbalanced grid voltage conditions. IEEE34th Annual Conference on Power Electronics Specialist, 2003. PESC’03, Acapulco, Mexico. 2003;2:760 766. https://doi.org/10.1109/PESC.2003.1218151
10. Brekken T.K.A., Mohan N. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions. IEEE Transactions on Energy Conversion. 2007;22(1):129 35. https://doi.org/10.1109/TEC.2006.889550
11. Meshcheryakov V.N., MuravyevA.A. Asynchronous generator based on a dual power machine. Izvestiya SPbETU (LETI). 2016;4:45 49. (In Russ.)
12. Stepanchuk G.V., Morenko K.S. Bi-rotor electric generators for the wind sets. Don Agrarian Science Bulletin. 2011;2:65 73. (In Russ.).
13. Amer I.A., MiroshnichenkoA.A., Solomin E.V., Gordiyevskiy E.M., KovalevA.A. Control strategy for maximum power point tracking of doubly fed induction motor for a wind turbine. Electrotechnical Systems and Complexes. 2018;4:56-62. (In Russ.).
14. Aujla R.K. Generator Stator Protection, under/over voltage, under/over frequency and unbalanced loading: Theory and applications of protective relays. London, Ontario, Canada: University of Western Ontario, 2008. 11 р.
15. Zielichowski M., Fulczyk M. Influence of load on operating conditions of third harmonic ground-fault protection system of unit connected generator. IEE Proceedings – Generation, Transmission and Distribution. 1999;146(3):241-248. https://doi.org/10.1049/ip-gtd:19990249
16. Fulczyk M., Mydlikowski R. Influence of generator load conditions on third-harmonic voltages in generator stator winding. IEEE Transactions on Energy Conversion. 2005;20(1):158 165. https://doi.org/10.1109/TEC.2004.842391
17. Polishchuk V.I. Designing protection against turn-to-turn short-circuit of the rotor winding of synchronous generator based on the induction sensor of magnetic field dissipation. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2012;321(4):57 61. (In Russ.).
18. Anderson P.M., Henville C.F., Rifaat R., Johnson B., Meliopoulos S. Power system protection. Hoboken, New Jeresey, USA: John Wiley & Sons, 2022. 1424 р. https://doi.org/10.1002/9781119513100
19. Perdana I.N. Replacement of several single function generator protection relay at Badak LNG. MATEC Web of Conferences. EDP Sciences. 2019;277:03008. https://doi.org/10.1051/matecconf/201927703008
20. Bulatov Yu.N., KryukovA.V. Influence of asymmetric load on turbine-generator sets in distributed generation plants. Systems. Methods. Technologies. 2016;3:85 93. (In Russ.).
21. WilliamsonA.C., Urquhart E.B. Analysis of the losses in a turbine-generator rotor caused by unbalanced loading. Proceedings of the Institution of Electrical Engineers. 1976;123(12):1325 1332. https://doi.org/10.1049/piee.1976.0265
22. WilliamsonA.C. Measurement of rotor temperatures of a 500 MW turbine generator with unbalanced loading. Proceedings of the Institution of Electrical Engineers. 1976;123(8):795 803. https://doi.org/10.1049/piee.1976.0173
23. Ciontea C.I. The use of symmetrical components in electrical protection. 201972nd Conference for Protective Relay Engineers (CPRE). College Station, TX, USA, 2019. Рр. 1 8. https://doi.org/10.1109/CPRE.2019.8765870
24. Mamcarz D., Albrechtowicz P., Radwan-Pragłowska N., Rozegnał B. The analysis of the symmetrical short-circuit currents in backup power supply systems with low-power synchronous generators. Energies. 2020;13(17):4474. https://doi.org/10.3390/en13174474
25. Papkov B.V., Osokin V.L., KulikovA.L. About the features of small and distributed generation in the intellectual electric power industry. Vestnik UGATU. 2018;22(4):119 131. (In Russ.).
26. Ludwinek K., Szczepanik J., Sułowicz M. Experimental analysis of assessing of the tripping effectiveness of miniature circuit breakers in an electrical installation fed from a synchronous generator set. Electric Power Systems Research. 2017. Т. 142. C. 341 350. https://doi.org/10.1016/j.epsr.2016.09.028
27. Albrechtowicz P., Szczepanik J. The analysis of the effectiveness of standard protection devices in supply systems fed from synchronous generator sets. 2018. International Symposium on Electrical Machines (SME). Andrychow, Poland, 2018. Рр. 1 5. https://doi.org/10.1109/ISEM.2018.8442774
28. Mamcarz D., Albrechtowicz P., Radwan-Pragłowska N., Rozegnał B. The Analysis of the Symmetrical Short-Circuit Currents in Backup Power Supply Systems with Low-Power Synchronous Generators. Energies. 2020;13(17):4474. https://doi.org/10.3390/en13174474
29. Davletov B.B. Peculiarities of synchronous engines. Synchronous compensators. Razvitie i Aktualnye Voprosy Sovremennoy Nauki. 2017;7:38 40. (In Russ.).
30. Orlov V.S., SidorovA.V. Compensation of reactive power in low voltage distribution networks. In: Energosberezhenie i Innovatsionnye Tekhnologii. Tyumen, 2015. Pр. 144 146. (In Russ.).
31. Mikhalev D.S., IsmailovA.I., Konyaev N.V. Distributed generation for the agro-industrial sector. In: Nauka Molodykh-Budushchee Rossii. Kursk, 2019. Pр. 127 130. (In Russ.).
32. Nazarenko Yu.V., Konyaev N.V., ShkabenkoA.Yu., GilyukA.A. Justification for the use of alternative power supply for private farms. Regionalniy Vestnik. 2018;1:5 7. (In Russ.).
33. Dmitriev V.N., Milashkina O.V., Borisov I.A. Application simmetriry pattern for raise quality electric energy autonomous sources nutrition. Power Engineering: Research, Equipment, Technology. 2009;3 4:59 64. (In Russ.).
34. VinogradovA.V., LansbergA.A., Golikov I.O. Operation of an electric energy storage system with phase voltage adjusting. Electrical Engineering and Electrical Equipment in Agriculture. 2022;69(3):26 35. (In Russ.). https://doi.org/10.22314/2658-4859-2022-69-3-26-35
35. VinogradovA.V., LansbergA.A., VinogradovaA.V. Analysis of the configuration of 0.4 kV electrical grids of the Orel region. Electrical Engineering and Electrical Equipment in Agriculture. 2023;70(4):22 29. (In Russ).
36. Muljadi E., Yildirim D., Batan T., Butterfield C.P. Understanding the unbalanced-voltage problem in wind turbine generation. Conference Record of the 1999 IEEE Industry Applications Conference Thirty-Forth IAS Annual Meeting (Cat No99CH36370). IEEE, 1999. Pp. 1359 1365. https://doi.org/10.1109/IAS.1999.801678
37. IEC61000 2 2:2002. Electromagnetic compatibility (EMC) – Part 2 2: Environment – Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems: 2002 03 28. Switzerland: International Electrotechnical Commission, 2002. 57 р.
38. Barrero F., Martínez S., Yeves F., Mur F., Martínez P.M. Universal and reconfigurable to UPS active power filter for line conditioning. IEEE Transactions on Power Delivery. 2003;18(1):283 290. https://doi.org/10.1109/TPWRD.2002.804014
39. Graovac D., Katić V.A., RuferA. Power quality problems compensation with universal power quality conditioning system. IEEE Transactions on Power Delivery. 2007;22(2):968 976. https://doi.org/10.1109/TPWRD.2006.883027
40. Morán L., Pastorini I., Dixon J., Wallace R. Series active power filter compensates current harmonics and voltage unbalance simultaneously. IEE Proceedings: Generation, Transmission and Distribution. 2000;147(1):31 36. https://doi.org/10.1049/ip-gtd:20000027
41. Singh B., Al-Haddad K., ChandraA. A review of active filters for power quality improvement. IEEE Transactions on Industrial Electronics. 1999;46(5):960 971. https://doi.org/10.1109/41.793345
42. García-CerradaA., Pinzón-Ardila O., Feliu-Batlle V., Roncero-Sánchez P., García-González P. Application of a repetitive controller for a three-phase active power filter. IEEE Transactions on Power Electronics. 2007;22(1):237 246. https://doi.org/10.1109/TPEL.2006.886609
43. Singh B., SolankiJ. An implementation of an adaptive control algorithm for a three-phase shunt active filter. IEEE Transactions on Industrial Electronics. 2009;56(8):2811 2820. https://doi.org/10.1109/TIE.2009.2014367
44. LuoA., Peng S., Wu C., Wu J., Shuai Z. Power electronic hybrid system for load balancing compensation and frequency-selective harmonic suppression. IEEE Transactions on Industrial Electronics. 2012;59(2):723 732. https://doi.org/10.1109/TIE.2011.2161066
45. George S., Agarwal V. A DSP based optimal algorithm for shunt active filter under nonsinusoidal supply and unbalanced load conditions. IEEE Transactions on Power Electronics. 2007;22(2):593 601. https://doi.org/10.1109/TPEL.2006.890001
46. Ali M., LaboureE., Costa F. Integrated active filter for differential-mode noise suppression. IEEE Transactions on Power Electronics. 2014;29(3):1053 1057. https://doi.org/10.1109/TPEL.2013.2276396
47. Ribeiro E.R., Barbi I. Harmonic voltage reduction using a series active filter under different load conditions. IEEE Transactions on Power Electronics. 2006;21(5):1394 1402. https://doi.org/10.1109/TPEL.2006.880265
48. Peng F.Z., Akagi H., NabaeA. A New approach to harmonic compensation in power systems-a combined system of shunt passive and series active filters. IEEE Transactions on Industry Applications.1990;26(6):983 990. https://doi.org/10.1109/28.62380
49. Swain S.D., Ray P.K., Mohanty K.B. Voltage compensation and stability analysis of hybrid series active filter for harmonic components. Annual IEEE India Conference, INDICON. Mumbai, India, 2013. Рр. 1 6. https://doi.org/10.1109/INDCON.2013.6726005
50. Swain S.D., Ray P.K., Mohanty K.B. Improvement of power quality using a robust hybrid series active power filter. IEEE Trans Power Electron. 2017;32(5):3490-3498. https://doi.org/10.1109/TPEL.2016.2586525
51. Akagi H., Kanazawa Y., NabaeA. Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Transactions on Industry Applications. 1984; IA 20(3):625 630. https://doi.org/10.1109/TIA.1984.4504460
52. Dixon J.W., García J.J., Morán L. Control system for three-phase active power filter which simultaneously compensates power factor and unbalanced loads. IEEE Transactions on Industrial Electronics. 1995;42:636 641. https://doi.org/10.1109/41.475504
53. Rastogi M., Mohan N., EdrisA.A. Hybrid-active filtering of harmonic currentsin powersystems. IEEE Transactions on Power Delivery. 1995;10(4):1994-2000. https://doi.org/10.1109/61.473352
54. Bhattacharya S., VeltmanA., Divan D.M., LorenzR.D. Flux-based active filter controller.IEEE Transactions on IndustryApplications. 1996;32(3):491-502. https://doi.org/10.1109/28.502159
55. Singh B., Al-Haddad K., ChandraA. Active power filter with sliding mode control. IEE Proceedings: Generation, Transmission and Distribution. 1997;144(6):564-568. https://doi.org/10.1049/ip-gtd:19971431
56. ChandraA., Singh B., Singh B.N., Al-Haddad K. An improved control algorithm of shunt active filter for voltage regulation, harmonic elimination, power-factor correction, and balancing of nonlinear loads. IEEE Transactions on Power Electronics. 2000;15(3):495 507. https://doi.org/10.1109/63.844510
57. Pena R., Cardenas R., Escobar E., Clare J., Wheeler P. Control strategy for a Doubly-Fed Induction Generator feeding an unbalanced grid or stand-alone load. Electric Power Systems Research. 2009;79(2):355 364. https://doi.org/10.1016/j.epsr.2008.07.005
58. Hochgraf C., Lasseter R.H. Statcom controls for operation with unbalanced voltages. IEEE Transactions on Power Delivery. 1998;13(2):538 544. https://doi.org/10.1109/61.660926
59. Li Y., Vilathgamuwa D.M., Loh P.C. Microgrid power quality enhancement using a three-phase four-wire grid-interfacing compensator. IEEE Transactions on Industry Applications. 2005;41(6):1707 1719. https://doi.org/10.1109/TIA.2005.858262
60. Li Y.W., Vilathgamuwa D.M., Loh P.C. A grid-interfacing power quality compensator for three-phase three-wire microgrid applications. IEEE Transactions on Power Electronics. 2006;21(4):1021 1031. https://doi.org/10.1109/TPEL.2006.876844
61. Hojo M., Iwase Y., Funabashi T., Ueda Y. A method of three-phase balancing in microgrid by photovoltaic generation systems. 13th International Power Electronics and Motion Control Conference, EPE-PEMC2008. Poznan, Poland, 2008. Pp. 2487 2491. https://doi.org/10.1109/EPEPEMC.2008.4635637
62. Cheng P.T., Chen C.A., Lee T.L., Kuo S.Y. A cooperative imbalance compensation method for distributed-generation interface converters. IEEE Transactions on Industry Applications. 2009;45(2):805 815. https://doi.org/10.1109/TIA.2009.2013601
63. Oliveira da Silva S.A., Donoso-Garcia P, Cortizo P.C., Seixas P.F. A three-phase line-interactive UPS system implementation with series-parallel active power-line conditioning capabilities. Conference Record – IAS Annual Meeting (IEEE Industry Applications Society) (Cat. No.01CH37248). Chicago, USA, 2001;4:2389 2396. https://doi.org/10.1109/IAS.2001.955956
64. Savaghebi M., JalilianA., Vasquez J.C., Guerrero J.M. Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Transactions on Industrial Electronics. 2012;60(4):1390 1402. https://doi.org/10.1109/TIE.2012.2185914
Review
For citations:
Bolshev V.E., Vinogradov A.V., Kramskoy S.V., Belov S.I. Protection of electric generators of distributed generation objects against emergency modes. Agricultural Engineering (Moscow). 2024;26(3):80-88. (In Russ.) https://doi.org/10.26897/2687-1149-2024-3-80-88