Preview

Agricultural Engineering (Moscow)

Advanced search

Developing a motion control system for a robotic platform based on laser ranging methods (LiDAR)

https://doi.org/10.26897/2687-1149-2023-2-19-27

Abstract

The motion control system of the robotic platform should design a route and build a map of the platform’s real-time movement. The authors have developed a system for controlling the movement of a robotic platform in rows of garden plantings based on the technology of measuring distances by emitting light with an optical range rangefi nder LiDAR sensor. They have obtained a program code for planning the path of travel and setting the points of the travel trajectory in the Python programming language in the Ubuntu operating system (the Rviz visualization environment). To fi nd the optimal trajectory, they have applied an algorithm for traversing the graph and fi nding the optimal path. As a result, they have designed a robotic platform equipped with a LiDAR Velodyne Puck sensor (VLP-16) and a Benewake TFmini Plus rangefi nder measuring in real time the distance between the robotic platform and the apple tree model via a serial port (COM port). The accuracy of the robotic platform travel was evaluated under laboratory conditions. The experiment was conducted with the use of Super Lamp Holder SLH3 45W 220v 5500K RoHS fl uorescent discharge lamps, the illumination level varied from 10000 to 110000 lux and was controlled with the help of an Uprtek MF250N pulse spectrometer. The factorial experiment revealed the most effi cient travel mode of the robotic platform along the given trajectory: travel speed – 2.5 km/h; illuminance – 109600 lux; distance to the tree – 0.5 m. Positioning of the robotic platform relative to each tree in the rows of plantations and autonomous performance of basic technological operations with a deviation from the specifi ed trajectory of not more than 1.5 to 2 cm meet the agrotechnical requirements for monitoring of orchard plantations, application of plant protection agents, harvesting of fruit crops, and contour pruning of tree crowns.

About the Authors

A. I. Kutyrev
Federal Scientifi c Agroengineering Centre VIM
Russian Federation

Aleksei I. Kutyrev, PhD (Eng), Senior Research Engineer

109428, Moscow, 1st Institutsky Proezd Str., 5



A. I. Dyshekov
Federal Scientifi c Agroengineering Centre VIM
Russian Federation

Artur I. Dyshekov, Junior Research Engineer

109428, Moscow, 1st Institutsky Proezd Str., 5



References

1. Смирнов И.Г., Хорт Д.О., Кутырев А.И. Интеллектуальные технологии и роботизированные машины для возделывания садовых культур // Сельскохозяйственные машины и технологии. 2021. № 15 (4). С. 35-41. https://doi.org/ 10.22314/2073-7599-2021-15-4-35-41 Smirnov I.G., Khort D.O., Kutyrev A.I. Intelligent Technologies and Robotic Machines for Garden Crops Cultivation. Agricultural Machinery and Technologies. 2021;15(4):35-41. (In Rus.) https://doi.org/10.22314/2073-7599-2021-15-4-35-41

2. Al-Sagban M., Dhaouadi R. Neural based autonomous navigation of wheeled mobile robots. Journal of Automation Mobile Robotics and Intelligent Systems. 2016;10(2):64-72.

3. Khort D., Kutyrev A., Kiktev N., Hutsol T., Glowacki S., Kuboń M., Nurek T., Rud A., Gródek-Szostak Z. Automated mobile hot mist generator: A quest for eff ectiveness in fruit horticulture. Sensors. 2022;22(9):3164. https://doi.org/10.3390/s22093164

4. Khort D.O., Kutyrev A.I., Smirnov I.G. Research into the Parameters of a Robotic Platform for Harvesting Apples. Hu Z., Petoukhov S., Yanovsky F., He M. (eds) Advances in Computer Science for Engineering and Manufacturing. ISEM 2021. Lecture Notes in Networks and Systems. 2022;463:149-159. https://doi.org/ 10.1007/978-3-031-03877-8_13

5. Luo C.M., Gao J.Y., Li X.D., Mo H.W., Jiang Q.M. Sensor-based autonomous robot navigation under unknown environments with grid map representation. 2014 IEEE Symposium on Swarm Intelligence. 2014. Рp. 1-7. https://doi.org/10.1109/SIS.2014.7011782

6. Luan P.G., Thinh N.T. Real-time hybrid navigation system-based path planning and obstacle avoidance for mobile robots. Applied Sciences. 2020;10(10):3355. https://doi.org/ 10.3390/app10103355

7. Khort D., Kutyrev A., Filippov R., Kiktev N., Komarchuk D. Robotized platform for picking of strawberry berries. 2019 IEEE International Scientifi c-Practical Conference Problems of Infocommunications. Science and Technology. 2019;869-872. https://doi.org/ 10.1109/PICST47496.2019.9061448

8. Zong C., Ji Z., Yu Y., Shi H. Research on obstacle avoidance method for mobile robot based on multisensor information fusion. Sensors and Materials. 2020;32(4):1159-1170. https://doi.org/ 10.18494/SAM.2020.2540

9. Alajlan A.M., Almasri M.M., Elleithy K.M., Multi-sensor based collision avoidance algorithm for mobile robot. Long Island Systems Applications and Technology. 2015. Рp. 1-6. https://doi.org/ 10.1109/LISAT.2015.7160181

10. Khort D., Kutyrev A., Filippov R., Semichev S. Development control system robotic platform for horticulture. E3S Web of Conferences. 2021;262:01024. https://doi.org/10.1051/ e3sconf/202126201024

11. Almasri M., Elleithy K., Alajlan A. Sensor fusion based model for collision free mobile robot navigation. Sensors. 2016;16(1):24. https://doi.org/10.3390/s16010024

12. Qu D., Hu Y., Zhang Y. The investigation of the obstacle avoidance for mobile robot based on the multi sensor information fusion technology. International Journal of Manufacturing. 2013;1:366-370. https://doi.org/10.7763/IJMMM.2013.V1.79

13. Sharma R.K., Honc D., Dusek F. Sensor fusion for prediction of orientation and position from obstacle using multiple IR sensors an approach based on Kalman fi lter. 2014. International Conference on Applied Electronics. 2014. Рр. 263-266. https://doi.org/ 10.1109/AE.2014.7011716

14. Chandrasenan C., Nafeesa T.A., Rajan R., Vijayakumar K. Multisensor data fusion based autonomous mobile robot with manipulator for target detection. International Journal of Research in Engineering and Technology. 2014;3:75-81.

15. Smirnov I., Kutyrev A., Kiktev N. Neural network for identifying apple fruits on the crown of a tree. E3S Web of Conferences. International scientifi c forum on computer and energy Sciences, WFCES. 2021;01021. https://doi.org/10.1051/e3sconf/202127001021

16. Khort D., Kutyrev A., Smirnov I., Osypenko V., Kiktev N. Computer vision system for recognizing the coordinates location and ripeness of strawberries. Communications in Computer and Information Science. 2020;1158:334-343. https://doi.org/ 10.1007/978-3-030-61656-4_22

17. Sgorbissa A., Zaccaria R. Planning and obstacle avoidance in mobile robotics. Robotics and Autonomous Systems. 2012;60(4):628-638. https://doi.org/10.1016/j.robot.2011.12.009

18. Pandey A., Kumar S., Pandey K.K., Parhi D.R. Mobile robot navigation in unknown static environments using ANFIS controller. Perspectives on Science. 2016;8:421-423. https://doi.org/ 10.1016/j.pisc.2016.04.094

19. Yoon S.W., Park S.B., Kim J.S., Kalman fi lter sensor fusion for mecanum wheeled automated guided vehicle localization. Journal of Sensors. 2015;347379. https://doi.org/10.1155/2015/347379

20. Alatise M., Hancke G. Pose estimation of a mobile robot based on fusion of IMU data and vision data using an extended Kalman fi lter. Sensors. 2017;17(10):2164. https://doi.org/ 10.3390/s17102164

21. Урваев И.Н. Навигация мобильного робота на основе методов лазерной дальнометрии // Измерения. Мониторинг. Управление. Контроль. 2021. № 1 (35). С. 44-51. https://doi.org/ 10.21685/2307-5538-2021-1-5 Urvaev I.N. Mobile robot navigation based on laser range methods. Izmerenie. Monitoring. Upravlenie. Kontrol = Measuring. Monitoring. Management. Control. 2021;1(35):44-51. (In Rus.) https://doi.org/10.21685/2307-5538-2021-1-5


Review

For citations:


Kutyrev A.I., Dyshekov A.I. Developing a motion control system for a robotic platform based on laser ranging methods (LiDAR). Agricultural Engineering (Moscow). 2023;25(2):19-27. (In Russ.) https://doi.org/10.26897/2687-1149-2023-2-19-27

Views: 252


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1149 (Print)
ISSN 2687-1130 (Online)