Preview

Agricultural Engineering (Moscow)

Advanced search

MULTIPLE-SCALE WAVELET ANALYSIS OF THE PROFILOGRAM

https://doi.org/10.26897/2687-1149-2022-5-62-66

Abstract

The functional properties of the surface are significantly affected by its microgeometry, therefore it is necessary to optimize the parameters of the microgeometry of the surface of metal structures. The analysis and evaluation of the microgeometry of the surface allows an assessment of the fatigue strength of metal structures. In order to study the dependence of the durability of thin-sheet structures on the degree of corrosion destruction, the microgeometry of the surface was analyzed using a profilometer 130 in accordance with GOST 25142-82. Low-carbon cold-rolled steel 08kp was used as the test material. The surface roughness of the samples was Ra = 0.22 microns. The roughness parameters were calculated according to GOST 2789-73. A profilogram representing a discrete series of values of peaks and troughs of the relief of the metal plate surface was studied. To assess the microgeometry of the surface, a wavelet analysis was used, which allows processing signals that are nonstationary in time or inhomogeneous in space. The signal in the form of successive approximations has a trend, cyclic components and local features (fluctuations) around the components of the signal. The locality property of wavelets gives advantages over the trigonometric Fourier transform: the sines and cosines are defined on the entire numerical axis, and the wavelets have a compact carrier. For multiscale analysis, a fast cascade algorithm of calculations has been developed by analogy with the fast Fourier transform. In the study, the signal was decomposed to the 9th level. The reconstructed detailing coefficients represent high-frequency and low-frequency fluctuations. The decomposition of the signal to the 9th level made it possible to analyze the surface roughness of the 08kp steel using a multiple-scale wavelet analysis.

About the Authors

SERGEY M. Gaidar
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


ALEKSANDR E. Pavlov
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


ANNA M. Pikina
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


SOFYA M. Vetrova
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


References

1. Мусалимов В.М., Заморуев Г.Б., Калапышина И.И., Перечесова А.Д., Нуждин К.А. Моделирование мехатронных систем в среде MATLAB (Simulink/Simmechanics). СПб.: НИУ ИТМО, 2013. 114 с. EDN: VLVDAN.

2. Мусалимов В.М., Валетов В.А. Динамика фрикционного взаимодействия. СПб.: СПбГУ ИТМО, 2006. 191 с. EDN: VBZFVL.

3. Нефедкин А.И., Одинокова И.В., Гаевский В.В. Исследование влияния геометрических параметров абразивных зерен хонинговальных брусков на микрогеометрию поверхности деталей // Агроинженерия. 2022. Т. 24, № 3. С. 56-63. https://doi.org/10.26897/2687-1149-2022-3-56-63

4. Erokhin M.N., Gaidar S.M., Naji najm A.F., Alipichev A.Yu., Pikina A.M. Use of the selective transfer mechanism in movable couplings used in power transmissions of agricultural machines. Agricultural Engineering (Moscow). 2022; 24 (2): 52-58. https://doi.org/10.26897/2687-1149-2022-2-52-58

5. Пучин Е.А., Гайдар С.М. Применение молекулярной инженерии для повышения ресурса сельскохозяйственной техники // Вестник ФГОУ ВПО «МГАУ имени В.П. Горячкина». 2010. № 2 (41). С. 101-106. EDN: NGFBGD.

6. Чуи К. Введение в вейвлеты. М.: Мир, 2001. 412 с.

7. Добеши И. Десять лекций по вейвлетам. Ижевск: НИЦ «Хаотическая и регулярная динамика», 2001. 461 с.

8. Астафьева Н.М. Вейвлет-анализ: основы теории и примеры применения // Успехи физических наук. 1996. Т. 166, № 11. С. 1145-1170. https://doi.org/10.3367/UFNr.0166.199611a.1145

9. Фрик П.Г., Соколов Д.Д., Степанов Р.А. Вейвлет-анализ пространственно-временной структуры физических полей // Успехи физических наук. 2022. Т. 192, № 1. C. 69-99. https://doi.org/10.3367/UFNr.2020.10.038859

10. Дремин И.М., Иванов О.В., Нечитайло В.А. Вейвлеты и их использование // Успехи физических наук. 2001. Т. 171, № 5. С. 465-501. https://doi.org/10.3367/UFNr.0171.200105a.0465

11. Павлов А.Н., Храмов А.Е., Короновский А.А., Ситникова Е.Ю., Макаров В.А., Овчинников А.А. Вейвлет-анализ в нейродинамике // Успехи физических наук. 2012. Т. 182, № 9. С. 905-939. https://doi.org/10.3367/UFNr.0182.201209a.0905

12. Смоленцев Н.К. Основы теории вейвлетов. Вейвлеты в MATLAB. Издательство «ДМК Пресс», 2014. 628 с.

13. Малла С. Вейвлеты в обработке сигналов. М.: Мир, 2005. 671 с.


Review

For citations:


Gaidar S.M., Pavlov A.E., Pikina A.M., Vetrova S.M. MULTIPLE-SCALE WAVELET ANALYSIS OF THE PROFILOGRAM. Agricultural Engineering (Moscow). 2022;24(5):62-66. (In Russ.) https://doi.org/10.26897/2687-1149-2022-5-62-66

Views: 121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1149 (Print)
ISSN 2687-1130 (Online)