MATHEMATICAL MODEL OF A TECHNOLOGICAL LINE BASED ON MODULAR EQUIPMENT FOR THE PRODUCTION OF HUMIC FERTILIZERS
https://doi.org/10.26897/2687-1149-2022-3-19-26
Abstract
The development of organic agricultural production in Russia is hampered by the lack of the necessary organic fertilizers as modern technological lines processing peat, brown coal, sapropel, and biohumus are still unavailable. Because of the need for such technological lines, a mathematical model has been developed to describe the hydromechanical and mechanical processes, enabling operators to select the operating mode parameters of the technological line. For the first time, the proposed model can be used to form a suspension with the required fineness in a hydromechanical cleaner and reactor. The authors propose a technique for assembling technological lines based on modular equipment to process organic raw materials that ensures the industrial productivity and quality of humic fertilizers. It is shown that the presented mathematical model fully complies with the real technological production requirements and can be used for theoretical and engineering analysis. The mathematical model of the technological line processing organic raw materials is based on the theory of artificial neural networks. The model can be further improved to be used in the system for automatizing technological operations and monitoring the quality indicators of modular equipment in the processing of organic raw materials. This will provide a new level of synthesizing complex technical systems, which will be beneficial for agricultural production.
About the Author
KONSTANTIN N. SorokinRussian Federation
References
1. Dym C.L. Engineering Design: A Synthesis of Views. 1st Edition, Cambridge University Press, New York, 1994.
2. Алпатов Ю.Н. Моделирование процессов и систем управления: Учебное пособие. СПб.: Лань, 2018. 140 с. [Электронный ресурс]: URL: https://e.lanbook.com/book/106730.
3. Дмитриевский В.И. Гидромеханика. М.: Морской транспорт, 1962. 296 с.
4. Гришанин К.В. Гидравлическое сопротивление естественных русел. СПб.: Гидрометеоиздат, 1992. 184 с.
5. Петров А.В. Моделирование процессов и систем: Учебное пособие. СПб.: Лань, 2015. 288 с. [Электронный ресурс]. URL: https://e.lanbook.com/book/68472.
6. Шмакова М.В. Теория и практика математического моделирования речных потоков. СПб.: Лема, 2013. 142 с.
7. Шмакова М.В. Расчет заносимости русловых карьеров // Ученые записки Российского государственного гидрометеорологического университета. 2012. № 26. С. 71-75.
8. Эрозионные процессы / Под ред. Н.И. Маккавеева и Р. С. Чалова. М.: Мысль, 1984. 256 с.
9. Горлач Б.А., Шахов В.Г. Математическое моделирование. Построение моделей и численная реализация. СПб.: Лань, 2022. 292 с.
10. Cha P.D., Rosenberg J.J., Dym C.L. Fundamentals of Modeling and Analyzing Engineering Systems. Cambridge University Press, Cambridge, 2000. 466 pp.
Review
For citations:
Sorokin K.N. MATHEMATICAL MODEL OF A TECHNOLOGICAL LINE BASED ON MODULAR EQUIPMENT FOR THE PRODUCTION OF HUMIC FERTILIZERS. Agricultural Engineering (Moscow). 2022;24(3):19-26. (In Russ.) https://doi.org/10.26897/2687-1149-2022-3-19-26