CALCULATION OF THE TEMPERATURE FIELD OF THE HARDENED LAYER DURING ELECTROMECHANICAL SURFACE HARDENING
https://doi.org/10.26897/2687-1149-2022-2-59-64
Abstract
The main methods of surface hardening during electromechanical processing (EMP) include finishing-hardening electromechanical processing (FHEMP) and electromechanical surface hardening (EMSH). EMSH, as compared with the FHEMP modes, features a slow processing speed (0.6...1.4 m/min), a long contact width of up to 5 mm, a significant electric current strength of the secondary circuit - 1200...3000 A. The article presents a three-dimensional model for predicting and determining the temperature fields of the hardened layer of U8 steel bushings during EMSH made in the ANSYS Workbench program. The authors carried out finite element modeling of the EMSH process consisting of successive transient structural strength analysis and transient thermal analysis. During EMSH, the thermomechanical cycle "heating - keeping - deformation - cooling" is carried out in the closed contact zone of the tool and the workpiece in hundredths of a second. It was found that during EMSH a temperature gradient is formed along the depth of the hardened zone as there is intensive cooling of the surface layer heated to 1559°C, as a result of heat removal by the underlying metal layers. After EMSH a fine-dispersed martensite is formed in the hardened zone. The study results are useful for developing the EMSH processing technology of the surface layer of bushings made of U8 steel based on the hardening mode with the following parameters: hardening speed of 1.2 m/min, the current strength in the secondary circuit of 1600 A, the secondary circuit voltage of 3 V; the width of the contact electric effect of 4 mm; the pressing force of the tool roller of 400 N.
About the Authors
LILIYA V. FedorovaRussian Federation
SERGEY K. Fedorov
Russian Federation
VAN TUYEN Ngo
Russian Federation
YULIYA S. Ivanova
Russian Federation
References
1. Аскинази Б.М. Упрочнение и восстановление деталей машин электромеханической обработкой. М.: Машиностроение, 1989. 200 с.
2. Морозов А.В., Федорова Л.В., Федотов Г.Д. Электромеханическая закалка рабочих поверхностей шлицевых втулок техники сельскохозяйственного назначения // Вестник Ульяновской государственной сельскохозяйственной академии. 2015. № 2(30). С. 169-175. https://doi.org/10.18286/1816-4501-2015-2-169-175
3. Fedorov S., Fedorova L., Zaripov V., Ivanova Yu., Vlasov M., Lvin M.S., Tuyen N.V Increasing the wear resistance of the executive surfaces of machine parts concentrated energy flows. Materials Today: Proceedings, 2019; 30: 388-392. https://doi.Org/10.1016/j.matpr.2019.12.382
4. Fedorova L.V, Fedorov S.K., Ivanova Y.S., Voronina M.V Increase of wear resistance of the drill pipe thread connection by electromechanical surface hardening.International Journal of Applied Engineering Research, 2017; 18: 7485-7489.
5. Яковлев С.А., Каняев Н.П. Влияние электрофизических параметров электромеханической обработки на ее технологические особенности // Вестник Ульяновской государственной сельскохозяйственной академии. 2012. № 3. С. 130-134.
6. White F.M. Heat transfer. Addison-Wesley, 1984. 588 pp.
7. Зубченко А.С. Марочник сталей и сплавов / А.С. Зубченко, М.М. Колосков, Ю.В. Каширский. М.: Машиностроение, 2003. 784 с.
8. Машиностроение. Т. II-2. Энциклопедия. Стали. Чугуны / В.В. Мухин, Г.Г. Беляков, А.И. Александров и др.; Под общ. ред. О.А. Банных, Н.Н. Александрова. М.: Машиностроение, 2001. 780 с.
9. Федорова Л.В., Федоров С.К., Иванова Ю.С., Lompas A.M. Технологические основы повышения износостойкости деталей электромеханической поверхностной закалкой // Известия высших учебных заведений. Машиностроение. 2017. № 9(690). С. 85-92. https://doi.org/10.18698/0536-1044-2017-9-85-92
10. Roberts Ibiye Aseibichin. Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing. Thesis or dissertation. University of Wolverhampton, 2012. 246 p.
11. Rubino F., Astarita A., Carlone P. Thermomechanical finite element modeling of the laser treatment of titanium cold-sprayed coatings. Сoatings, 2018; 8(6): 219. https://doi.org/10.3390/coatings8060219
Review
For citations:
Fedorova L.V., Fedorov S.K., Ngo V.T., Ivanova Yu.S. CALCULATION OF THE TEMPERATURE FIELD OF THE HARDENED LAYER DURING ELECTROMECHANICAL SURFACE HARDENING. Agricultural Engineering (Moscow). 2022;24(2):59-64. (In Russ.) https://doi.org/10.26897/2687-1149-2022-2-59-64