Preview

Agricultural Engineering (Moscow)

Advanced search

FLUIDIZATION OF MILLET AND PEA SEEDS

https://doi.org/10.26897/2687-1149-2021-5-13-19

Abstract

One of the convective drying methods used to intensify the process of drying granular materials is the use of a device with a fluidized bed. The essential advantages of fluidized bed dryers are the uniform drying of all the particles in the bed and the ease of loading and unloading the material. The study goal was to conduct an experimental study of the hydrodynamics of the fluidized bed of millet and pea seeds and the determination of the first critical velocity (the rate of the beginning of fluidization) based on these data. The authors took small (millet) and large (pea) seeds for the experiment. Based on the experimental data obtained, they constructed pseudo-liquefaction curves - AP = f (v) for millet and peas to determine the first critical fluidization rates (0.73 m/s for millet and 1.68 m/s for peas). The experimentally found values of the first critical fluidization rate were compared with the values calculated by the equations of O.M. Todes, Wen and Yu, and Grace. The study showed that all the equations provide an acceptable accuracy of calculations, but the accuracy of using the equation of O.M. Todes is somewhat higher. Therefore it can be primarily recommended for engineering analysis. The first critical fluidization rates, calculated according to the formula of O.M. Todes, were, accordingly: 0.69 m/s for millet and 1.60 m/s for pea. The calculation and experimental data on the first critical fluidization rates for millet and peas agree satisfactorily (the relative error for millet is 5.5%, for peas - 4.8%). The sufficiently high accuracy of the first critical fluidization rates is explained by the correct geometric shape of the studied seeds, which is close to spherical. Therefore, the first critical fluidization speed of the studied seed material can be determined using the formula of O.M. Todes.

About the Authors

ELENA L. Babicheva
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


STANISLAV P. Rudobashta
Russian State Agrarian University - Moscow Timiryazev Agricultural Academy
Russian Federation


IVAN I. Sidelnikov
Moscow Polytechnic University
Russian Federation


References

1. Svinarev V.A., Planovskii A.N., Rudobashta S.P. et al. Study of mass transfer between a spherical body and a turbulent gas stream. Journal of Engineering Physics, 1970; 12 (1): 5-7. https://doi.org/10.1007/BF00829406

2. Rudobashta S.P., Planovskii A.N., Svinarev V.A. An investigation of mass transfer in a spherical capillary-porous body under drying conditions. Journal of Engineering Physics, 1971; 13 (3): 160-164. https://doi.org/10.1007/BF00831464

3. Рудобашта С.П., Климов А.М., Паничкин В.И. Вакуумная сушилка для листового материала // Авт. свид. SU600361 A1, 30.03.1978. Заявка № 2127676 от 24.04.1975. БИ № 12 от 06.04.1978.

4. Рудобашта С.П., Климов А.М., Паничкин В.И. Способ сушки листовых материалов // Авт. свид. SU601540 A1 от 05.04.1978. Заявка № 2400544 от 24.08.1976. БИ № 13 от 14.03.1978.

5. Rudobashta S.P., Tsetovich A.N., Kartashov E.M. Theory of combined granulation/drying process. Theoretical Foundations of Chemical Engineering, 1991; 24 (5): 419-425.

6. Зуев Н.А., Рудобашта С.П., Зуева Г.А. и др. Совмещенный процесс сушки и стимуляции семян с помощью импульсного инфракрасного излучения // Вестник ФГОУ ВПО «МГАУ имени В.П. Горячкина». 2013. № 3 (59). С. 7-9.

7. Рудобашта С.П., Зуева Г.А. Математическое моделирование процесса сушки материала в аппарате с псевдоожиженным слоем // Математические методы в технике и технологиях - ММТТ. 2019. Т. 8. С. 77-80.

8. Рудобашта С.П., Зуева Г.А., Муравлева Е.А. Фермерская зерносушильная установка с тепловым насосом и ее расчет // Российский химический журнал. 2018. Т. 62. № 4. С. 22-27.

9. Кашменский Д.С., Рудобашта С.П. Влияние технологических параметров осциллирующей инфракрасной сушки семян на эффект стимуляции // Повышение эффективности процессов и аппаратов в химической и смежных отраслях промышленности: Сб. научных трудов Международной научно-технической конференции, посвящённой 105-летию со дня рождения А.Н. Плановского. 2016. С. 48-52.

10. Рудобашта С.П., Зуева Г.А. Моделирование динамики нагрева частиц в псевдоожиженном слое при осциллирующем инфракрасном энергоподводе // Современные задачи инженерных наук: Сб. научных трудов Международного научно-технического симпозиума. 2017. С. 75-76.

11. Ciesielczyk W., Stojiljkovic M., Ilic G. et al. Experimental study on drying kinetics of solid particles in fluidized bed. University of NIS, Facta Universitatis. Series: Mechanical Engineering, 1997; 1 (4): 469-478.

12. Alverez P.I., Shene C. Experimental study of the heat and mass transfer during drying in a fluidized bed dryer. Drying Technology, 1996; 14 (3-4): 701-718. https://doi.org/10.1080/07373939608917121

13. Kumaresan R., Viruthagiri T. Simultaneous heat and mass transfer studies in drying ammonium chloride in a batch-fluidized bed dryer. Indian Journal of Chemical Technology, 2006; 13 (5): 440-447.

14. Roy P., Vashishtha M., Khanna R. et al. Heat and mass transfer study in fluidized bed granulation - Prediction of entry length. Particuology, 2009; 7 (3): 215-219.

15. Biswal K.C., Bhowmik T., Roy G.K. Prediction of minimum fluidization velocity for gas-solid fluidization of regular particles in conical vessels. Chemical Engineering Journal, 1985; 30 (1): 57-62.

16. Wen C.Y., Yu Y.H. A generalized method for predicting the minimum fluidization velocity. Aiche Journal. 1966; 12: 610-612. https://doi.org/10.1002/aic.690120343

17. Ergun S. Fluid flow through packed columns. Chemical Engineering Progress, 1952; 48 (2): 89-94.

18. Peng Y., Fan L.T. Hydrodynamic characteristics of fluidization in liquid-solid tapered beds. Chemical Engineering Science, 1997; 52 (14): 2277-2290. https://doi.org/10.1016/S0009-2509(97)00061-4

19. Jing S., Hu Q.Y., Wang J.F. et al. Fluidization of coarse particles in gas-solid conical beds. Chemical Engineering Progress, 2000; 39(4): 379-387. https://doi.org/10.1016/S0255-2701(99)00103-8

20. Jing S., Cai G.B., Mei F. et al. Fluidization of fine particles in conical beds. Powder Technology, 2001; 118 (3): 271-274. https://doi.org/10.1016/S0032-5910(00)00385-5

21. Sheng Fang, Yanding Wei, Lei Fu et al. Modeling of the minimum fluidization velocity and the incipient fluidization pressure drop in a conical fluidized bed with negative pressure. Applied Sciences. 2020; 10 (24): 8764-8783. https://doi.org/10.3390/app10248764

22. Kaewklum R., Kuprianov VI. Theoretical and experimental study on hydrodynamic characteristics of fluidization in air-sand conical beds. Chemical Engineering Science, 2008; 63(6): 1471-1479. https://doi.org/10.1016/j.ces.2007.11.033

23. Sau D.C., Mohanty S., Biswal K.C. Minimum fluidization velocities and maximum bed pressure drops for gas-solid tapered fluidized beds. Chemical Engineering Journal, 2007; 132 (1-3): 151-157. https://doi.org/10.1016/J.CEJ.2007.01.036

24. Khani M.H. Models for prediction of hydrodynamic characteristics of gas-solid tapered and mini-tapered fluidized beds. Powder Technology, 2011; 205 (1): 224-230. https://doi.org/:10.1016/j.powtec.2010.09.018

25. Rasteh M., Farhadi F., Ahmadi G. Empirical models for minimum fluidization velocity of particles with different size distribution in tapered fluidized beds. Powder Technology, 2018; 338 (6): 563-575.

26. Rudobashta S.P., Zueva G.A. On-farm heat pump - assisted fluidized bed dryer and its kinetics calculation. Drying technology, 2020; 38 (1-2): 6-18. https://doi.org/10.1080/07373937.2019.1591436


Review

For citations:


Babicheva E.L., Rudobashta S.P., Sidelnikov I.I. FLUIDIZATION OF MILLET AND PEA SEEDS. Agricultural Engineering (Moscow). 2021;(5):13-19. (In Russ.) https://doi.org/10.26897/2687-1149-2021-5-13-19

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2687-1149 (Print)
ISSN 2687-1130 (Online)