KINETICS OF THE MICROARC OXIDATION COATING GROWTH IN THE NO-BATH PROCESS
https://doi.org/10.26897/2687-1149-2021-4-33-40
Abstract
The authors consider theoretical foundations of the coating formation when using the no-bath method of microarc oxidation (MAO) as applied to a point counter electrode. The relationships between the growth rate of the coating thickness and the electrical, geometric and chemical parameters of the MAO process have been mathematically determined. An algorithm for calculating the productivity of the MAO process, due to the growth rate of the coating thickness has been developed. The off ered methodology for the experimental selection of modes of the no-bath MAO of aluminum alloys with an electrically neutral nozzle was verifi ed to obtain a coating on a small area of a part with a fl at surface. In the experiment, with a constant “Nozzle-Workpiece” distance equal to 10 mm, the distance “Electrode-Workpiece” took the values of 5, 10, 20, 30 mm. As a “fl at” surface, the authors took the end face of a 50 mm rod made of the D16T alloy based on aluminum, and a rod made of the 08Kh18H10T steel with a diameter of 6 mm served as an electrode. Use was made of the composition applied in the bath method which included an electrolyte: 8 g of KOH, 30…35 g of Na2SiO3, 1 g of artifi cial diamond nanopowder per 6 liters of distilled water. The duration of the MAO process was 120 min. It has been experimentally established that an increase in the “Electrode-Workpiece” distance decreases the potential for coating formation, which decreases the current in the electrochemical circuit. The analysis of the MAO coating thickness has revealed that 5…15 mm is the optimal distance from the electrode and nozzle to the workpiece, which ensures a stable coating thickness of more than 100 microns on an area equal to or greater than the cross-sectional area of the nozzle supplying electrolyte. The expediency of using the developed mathematical model and the methodology for selecting the process modes with the no-bath method of microarc oxidation has been experimentally confi rmed. The experimental studies have established that the proposed scheme of the MAO process provides an increase in the productivity (the thickness growth rate) of coating deposition by 20% and a decrease in energy consumption by 25%.
About the Authors
ANATOLIY V. ChavdarovRussian Federation
VYACHESLAV A. Denisov
Russian Federation
References
1. Famiyen L., Huang X. Plasma electrolytic oxidation coatings on aluminum alloys: Mcrostructures, Properties, and Applications. Modern Concepts in Material Science. 2(1): 2019. MCMS.MS.ID.000526. DOI:10.33552/MCMS.2019.02.000526.
2. Zhang Y., Fan W., Du H.Q. et al. Corrosion behavior and structure of plasma electrolytic oxidation coated aluminum alloy. International journal of electrochemical science. 2017, 12: 6788-6800. DOI:10.20964/2017.07.70.
3. Miao J.G., Wu R., Hao K.D. et al. Effects of alloying elements on structure of plasma electrolytic oxidation ceramic coatings on aluminum alloys. Applied Mechanics and Materials. 2013; 310: 85-89. DOI:10.4028/www.scientific.net/AMM.310.85.
4. Shi-hang Kang, Wen-bin Tu, Jun-xiang Han et al. A significant improvement of the wear resistance of Ti6Al4V alloy by a combined method of magnetron sputtering and plasma electrolytic oxidation (PEO). Surface and Coatings Technology. 2019; 358: 879-890. DOI:10.1016/j.surfcoat.2018.12.025.
5. Guo Peitao, Tang Mingyang, Zhang Chaoyang. Tribological and corrosion resistance properties of graphite composite coating on AZ31 Mg alloy surface produced by plasma electrolytic oxidation. Surface and Coatings Technology. 2019; 359: 197-205. DOI:10.1016/j.surfcoat.2018.12.073.
6. Bing Yin, Zhenjun Peng, Jun Liang et al. Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribology International. 2016; 97: 97-107. DOI:10.1016/j.triboint.2016.01.020.
7. Pezzato L., Cerchier P., Brunelli K. et al. Plasma electrolytic oxidation coatings with fungicidal properties. Surface Engineering, 2019; 35(4): 325-333. DOI:10.1080/02670844.2018.1441659.
8. Jinhe Dou, Yang Chen, Huijun Yu et al. Research status of magnesium alloys by micro-arc oxidation: a review. Surface Engineering, 2017; 33(10): 731-738. DOI:10.1080/02670844.2017.1278642
9. Tongbo Wei, Fengyuan Yan, Jun Tian Characterization and wear- and corrosion-resistance of microatc oxidation ceramic coatings on aluminum alloy. Journal of Alloys and Compounds. 2005; 389(1-2): 169-176. DOI: org/10.1016/j.jallcom.2004.05.084.
10. Malyshev V.N., Volkhin A.M. Antifriction properties increasing of ceramic MAO-coatings. Proceedings of the institution оf Mechanical Engineers. Part: J. Journal of Engineering Tribology. 2014; 228(4): 435-444. DOI:10.1177/1350650113513570.
11. Лесневский Л.Н., Лежнёв Л.Ю., Ляховецкий М.А. Плазменные методы формирования износостойких покрытий элементов тепловых двигателей и установок // Вестник научно-технического развития. 2015. № 10. С. 31-43.
12. Киселева С.К., Зайнуллина Л.И., Абрамова М.М. и др. Микродуговое оксидирование высококремнистого алюминиевого сплава АК12Д // Наука и образование: Научное издание МГТУ им. Н.Э. Баумана. 2015. № 7. С. 115-128. DOI: 10.7463/0715.0779403
13. Криштал М.М., Ивашин П.В., Полунин А.В. и др. Повышение износостойкости деталей алюминиево-кремниевых сплавов методом МДО для работы в экстремальных режимах трения // Известия Самарского научного центра Российской академии наук. 2011. Т. 13. № 4-3. С. 765-768.
14. Чавдаров А.В., Скоропупов Д.И., Милованов Д.А. и др. Исследование стойкости керамических МДО-покрытий при термоциклировании // Труды ГОСНИТИ. 2015. Т. 121. С. 298-302.
Review
For citations:
Chavdarov A.V., Denisov V.A. KINETICS OF THE MICROARC OXIDATION COATING GROWTH IN THE NO-BATH PROCESS. Agricultural Engineering (Moscow). 2021;(4):33-40. (In Russ.) https://doi.org/10.26897/2687-1149-2021-4-33-40