CONTROL SYSTEM OF A ROBOTIC DEVICE USED FOR SERVICING A FEED TABLE
https://doi.org/10.26897/2687-1149-2021-4-4-8
Abstract
The authors propose to develop a robotic device for servicing a feed table in the cow barn. The device is intended to push the feed mixture to the walls of the feed table and make it more accessible to animals. The dispenser of concentrated feed additives improves the taste of the feed mixture, thereby increasing the level of feed consumption and livestock productivity. The components of the considered device were modeled and designed using the Compass 3-D software; simulation modeling of the control system of the electric drive was developed in the Matlab/Simulink environment; the software for controlling the device parameters was developed by Visual Studio code tools in the C-Sharp language. The electric drive developed on the basis of a simulation model made it possible to design a laboratory sample of the robotic platform. The developed device is capable of moving along a predetermined trajectory in manual and automatic modes. The software installed on the PC monitors the device operation, its positioning in the barn, the amount and type of feed additives dosed, and the battery charge level. It is noted that the introduction of the developed device into the technological process of feeding cattle will reduce labor costs for livestock feeding.
About the Authors
EVGENIY A. NikitinRussian Federation
DMITRIY YU. Pavkin
Russian Federation
DENIS V. Shilin
Russian Federation
References
1. Лобачевский Я.П., Дорохов А.С. Перспективные научно-технические проекты в сфере механизации и роботизации сельского хозяйства // Формирование единого научно-технологического пространства союзного государства: проблемы, перспективы, инновации: Материалы постоянно действующего семинара при Парламентском Собрании Союза Беларуси и России по вопросам строительства Союзного государства. 2017. С. 333-343.
2. Павкин Д.Ю., Никитин Е.А., Зобов В.А. Система роботизированного обслуживания кормового стола на животноводческих комплексах // Сельскохозяйственные машины и технологии. 2020. Т. 14. № 3. С. 33-38. DOI: 10.22314/2073-7599-2020-14-3-33-38
3. Кирсанов В.В., Павкин Д.Ю., Никитин Е.А. и др. Структурно-логистическая модель материальных потоков цифровой животноводческой фермы // Агроинженерия. 2020. № 5 (99). С. 26-32. DOI: 10.26897/2687-1149-2020-5-26-32
4. Ерохин М.Н., Катаев Ю.В., Вергазова Ю.Г. Проблемы изготовления и ремонта машин АПК с позиции принципа 5М // Сборник докладов Всероссийской научно-технической конференции «Отечественный и зарубежный опыт обеспечения качества в машиностроении». Тула, 23-25 октября 2019 года. С. 158-161.
5. Иванов Ю.Г., Габдуллин Г.Г., Атаманкина Л.Н. Обоснование структурной схемы получения высококачественного молока с индивидуальными особенностями коров на роботизированных фермах // Инновации в сельском хозяйстве. 2018. № 3 (28). С. 561-570.
6. Мишуров Н.П. Информационный менеджмент молочного скотоводства // Вестник ВНИИМЖ. 2014. № 4. С. 41-48.
7. Bargo F., Muller L.D., Delahoy J.E. et al. Milk response to concentrate supplementation of high producing dairy cows grazing at two pasture allowances. Journal of dairy science. 2002; 85 (7): 1777-1792. DOI: 10.3168/jds.S0022-0302(02)74252-5
8. Chapinal N., Veira D.M., Weary D.M. et al. Technical note: Validation of a system for monitoring individual feeding and drinking behavior and intake in group-housed cattle. Journal of Dairy Science. 2007; 90 (12): 5732-5736. DOI: 10.3168/jds.2007-0331
9. Rudolfs Rumba, Agris Nikitenko. Development of free-flowing pile pushing algorithm for autonomous mobile feed-pushing robots in cattle farms. Engineering for Rural Development. 2018. Р. 958-963. DOI: 10.22616/ERDev2018.17.N477
10. Tsai S.H., Kao L.H., Lin H.Y. et al. A sensor fusion based nonholonomic wheeled mobile robot for tracking control. Sensors, 2020; 20(24): 7055. DOI: 10.3390/s20247055
11. Xin L.J., Wang Q.L., She J.H. et al. Robust adaptive tracking control of wheeled mobile robot. Robotics and Autonomous Systems, 2016; 78(С): 36-48. DOI: 10.1016/j.robot.2016.01.002
12. Boukens M., Boukabou A. Design of an intelligent optimal neural network-based tracking controller for nonholonomic mobile robot systems. Neurocomputing, 2017; 226: 46-57. DOI: 10.1016/j.neucom.2016.11.029
13. Nikitin E., Pavkin D. Modeling the motion processes of a multifunctional robot for animal units // E3S Web of Conferences. Topical Problems of Green Architecture, Civil and Environmental Engineering, TPACEE 2019. 2020. Article number 06023. https://doi.org/10.1051/e3sconf/202016406023
14. Miller-Cushon E.K., DeVries T.J. Feed sorting in dairy cattle: Causes, consequences, and management. Journal of dairy science, 2017; 100 (5): 4172-4183. DOI: 10.3168/jds.2016-11983.
Review
For citations:
Nikitin E.A., Pavkin D.Yu., Shilin D.V. CONTROL SYSTEM OF A ROBOTIC DEVICE USED FOR SERVICING A FEED TABLE. Agricultural Engineering (Moscow). 2021;(4):4-8. (In Russ.) https://doi.org/10.26897/2687-1149-2021-4-4-8