EXPERIMENTAL MODELING OF THE VAPORIZATION OF LIQUID SOLUTIONS UNDER VACUUM AND MICROWAVE FIELD CONDITIONS
https://doi.org/10.34677/1728-7936-2020-1-41-50
Abstract
The paper provides a comparative analysis of traditional methods of concentrating food solutions. The author identifies the main problem of classical evaporators, which is associated with the impossibility of obtaining high concentrations of the finished product due to a sharp increase in its viscosity and temperature caused by the formation of a boundary layer. He puts forward a scientific and technical hypothesis offering a possible solution to this problem by providing a considerable supply of energy directly to the product moisture. The paper outlines thermophysical and physical schemes of evaporation processes based on traditional and innovative methods. Their fundamental differences are highlighted and the relevance of the development of an innovative evaporation method is proved. The author presents a scheme of an innovative evaporator, which allows to obtain the finished product in the solid phase with a final concentration of up to 90°brix. The author reports on the experiments conducted with apple juice to study the effect of pressure and power of the electromagnetic field on the steam output of the evaporator. As a result, he established relationships that indicate a constant evaporation rate throughout the entire process, up to a concentration of 80...85°brix. The product temperature did not exceed 35...40°C, which may indicate its high nutritional value. The above data confirm the formulated hypothesis about a possibility of transition from the boundary conditions of the 3rd type to the boundary conditions of the 2nd type by using microwave energy in the process of evaporation. On the basis of the obtained results, a model in the criterial form was obtained, which makes it possible to accurately calculate the performance of a microwave vacuum evaporator in certain ranges of the energy deposition number and the obtained dimensionless group.
About the Author
ALEKSANDR V. GavrilovRussian Federation
References
1. Gabor D., Colombo U., King A.S. Beyond the age of waste: a report to the Club of Rome. Elsevier, 2016. 258 p.
2. Clapp J., Newell P., Brent Z.W. The global political economy of climate change, agriculture and food systems. The Journal of Peasant Studies. 2018. vol. 45, no. 1, Рр. 80-88.
3. Govindan K. Sustainable consumption and production in the food supply chain: A conceptual framework. International Journal of Production Economics, 2018. 195, Рр. 419-431.
4. Cai X., Wallington K., Shafiee-Jood M., & Marston L. Understanding and managing the food-energy-water nexus-opportunities for water resources research. Advancesin Water Resources, 2018. 111, Рр. 259-273.
5. Prosekov A.Y., & Ivanova S.A. Food security: The challenge of the present. Geoforum, 2018. vol. 91, Рр. 73-77.
6. Marsden T. Theorising food quality: some key issues in understanding its competitive production and regulation. In Qualities of food. Manchester University Press. 2018. Рр. 129-155.
7. Balin B.E., Akan D.M. EKC hypothesis and the effect of innovation: A panel data analysis. Journal of Business Economics and Finance. 2015. vol. 4. № 1. Рр. 81-91.
8. Gennadii Ryabcev. The Problem Of Informal Impact In The Activities Of Regulatory Authorities And The Ways Of Its Solutions. Strategic Priorities. 2017. vol. 44. №. 3. Рр. 59-66.
9. Кирич Н.Б., Кшаш 1.А. Ресурсоощаднгсть харчових переробних шдприемств вимога дня. Book of abstracts International scientific and technical conference" State and prospects of food science and industry". ТНТУ, 2015. Рр. 196-198.
10. Hosovskyi R. et al. Diffusive mass transfer during drying of grinded sunflower stalks. Chemistry & Chemical technology. 2016. vol. 10, № 4. Рр. 459-464.
11. Sabarez Henry T. Thermal Drying of Foods. Fruit Preservation. Springer, New York, № 2018. Рр. 181-210.
12. Kumar C., and M.A. Karim. Microwave-convective drying of food materials: A critical review. Critical reviews in food science and nutrition 59.3 (2019): Рр. 379-394.
13. Monteiro Ricardo L., et al. Microwave vacuum drying and multi-flash drying of pumpkin slices. Journal of food engineering 232, 2018: Рр. 1-10.
14. Rahman M.M., et al. Multi-scale model of food drying: Current status and challenges. Critical reviews in food science and nutrition 58.5, 2018: Рр. 858-876.
15. Sabarez H.T., S. Keuhbauch, and K. Knoerzer. Ultrasound assisted low temperature drying of food materials. IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politecnica de Valencia, 2018. Рр. 1245-1250.
16. Zambon A., et al. Supercritical CO2 drying of food matrices. IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politecnica de Valencia, 2018. Рp. 17-23.
17. Rodriguez Oscar, et al. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture 98.5, 2018: Рр. 1660-1673.
18. Burdo O.G., Bandura V.N., & Levtrinskaya Y.O. Electrotechnologies of targeted energy delivery in the processing of food raw materials. Surface Engineering and Applied Electrochemistry. 2018. vol. 54, № 2, Рр. 210-218.
19. Burdo O., Bandura V, Zykov A., Zozulyak I., Levtrinskaya Y., Marenchenko E. Development of wave technologies to intensify heat and mass transfer processes. Eastern-European Journal of Enterprise Technologies. 2017. vol. 4, J№ 11(88). Рр. 34-42.
20. Khajehei F., Niakousari M., Eskandari M.H., Sarshar M. Production of Pomegranate juice concentrate by complete block cryoconcentration process. Journal of Food Process Engineering. 2015, vol. 38, № 5, Рр. 488-498.
21. Chantasiriwan S. Simulation of quadruple-effect evaporator with vapor bleeding used for juice heating. International Journal of Food Engineering. 2016, vol. 2, № 1, Рр. 36-41.
22. Ul'ev L.M., Vasil'ev M.A. Heat and power integration of processes for the refinement of coking products. Theoretical Foundations of Chemical Engineering. 2015. vol. 49. № 5. Рр. 676-687.
23. Левин С.Е., Нагибин С.Я., Шилов В.В. Мониторинг промышленной безопасности топливно-энергетического комплекса. Национальная безопасность России: актуальные аспекты. 2018. С. 30-36.
24. Тимонин А.С. Основы конструирования и расчета технологического и природоохранного оборудования: справочник. Т. 1-3. Калуга: Изд-во Н. Бочкаревой. 2001. 988 с.
25. Тришин Ф.А., Трач А.Р., Орловская Ю.В. Управление потоками энергии в низкотемпературных разделительных установках. Проблемы региональной энергетики. 2018. Vol. 1. № 36. С. 72-86.
26. Основные процессы и аппараты химической технологии: учебное пособие для вузов. Под ред. Ю.И. Дытнерского. Изд. 2-е, перераб. и доп. М.: Химия. 1993. 494 с.
Review
For citations:
Gavrilov A.V. EXPERIMENTAL MODELING OF THE VAPORIZATION OF LIQUID SOLUTIONS UNDER VACUUM AND MICROWAVE FIELD CONDITIONS. Agricultural Engineering (Moscow). 2020;(1):41-50. (In Russ.) https://doi.org/10.34677/1728-7936-2020-1-41-50